Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37065768

RESUMO

IRE1 belongs to a type I transmembrane protein family harboring two functional domains, cytoplasmic domain with kinase and RNAse catalytic activity, and the luminal domain, which is involved in the sensing of unfolded proteins. IRE1 molecule undergoes dimerization in the lumenal domain, which functionally activates the catalytic C-terminal domain. IRE1 activation is directly related to transition between monomeric and dimeric forms. We have deduced two quaternary structures from the published crystal structure of IRE1. One structure with a large stable interface that requires large activation and deactivation energy to active IRE1. The other quaternary structure has low dissociation energy and is more suitable for IRE1 oligomeric transition.

2.
FEBS Lett ; 597(7): 962-974, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36723387

RESUMO

IRE1 is a transmembrane signalling protein that activates the unfolded protein response under endoplasmic reticulum stress. IRE1 is endowed with kinase and endoribonuclease activities. The ribonuclease activity of IRE1 can switch substrate specificities to carry out atypical splicing of Xbp1 mRNA or trigger the degradation of specific mRNAs. The mechanisms regulating the distinct ribonuclease activities of IRE1 have yet to be fully understood. Here, we report the Bcl-2 family protein Bid as a novel recruit of the IRE1 complex, which directly interacts with the cytoplasmic domain of IRE1. Bid binding to IRE1 leads to a decrease in IRE1 phosphorylation in a way that it can only perform Xbp1 splicing while mRNA degradation activity is repressed. The RNase outputs of IRE1 have been found to regulate the homeostatic-apoptotic switch. This study, thus, provides insight into IRE1-mediated cell survival.


Assuntos
Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo
3.
Life Sci ; 265: 118740, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188833

RESUMO

The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Dobramento de Proteína , Transdução de Sinais , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...